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We present a unified description of heat flow in two-terminal hybrid quantum systems. Using simple models,
we analytically study nonlinear aspects of heat transfer between various reservoirs—metals, solids, and spin
baths—mediated by the excitation and the relaxation of a central (subsystem) mode. We demonstrate rich
nonlinear current-temperature characteristics, originating from either the molecular anharmonicity or the res-
ervoir (complex) energy spectra. In particular, we establish sufficient conditions for thermal rectification in
two-terminal junctions. We identify two classes of rectifiers. In type-A rectifiers the energy-dependent density
of states of the reservoirs are dissimilar. In type-B rectifiers the baths are identical, but include particles whose
statistics differ from that of the subsystem, to which they asymmetrically couple. Nonlinear heat flow and
specifically thermal rectification are thus ubiquitous effects that could be observed in a variety of systems—

phononic, electronic, and photonic.
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I. INTRODUCTION

Understanding heat transfer in two-terminal hybrid struc-
tures is of fundamental and practical importance for control-
ling transport at the nanoscale and for realizing functional
devices [1,2]. Among the systems that fall into this category
are metal-molecule-metal junctions, the basic component of
molecular electronic devices. Here, the excessive energy
generated at the molecular core should be effectively re-
moved for realizing a stable device, as demonstrated theo-
retically [3] and experimentally [4,5]. Another composite
structure of fundamental interest is a dielectric-molecule-
dielectric system, where vibrational energy flowing between
the components activates reactivity and controls dynamics
[6-8]. Phononic junctions are also captivating for under-
standing the validity of Fourier’s law of thermal conduction
at the nanoscale [9,10]. Single-mode radiative heat conduc-
tion between Ohmic metals was recently detected, manifest-
ing that photon-mediated thermal conductance is quantized
[11]. Other hybrid systems with interesting thermal proper-
ties are electronic-spin—nuclear-spin interfaces [12], metal-
molecule-dielectric contacts [13], and metal-superconductor
junctions [14].

From the theoretical point of view, the basic challenge
here is to understand the role of nonlinear interactions in
determining transport mechanisms and, specifically, in induc-
ing normal (Fourier) heat conduction, either within classical
laws [9,15,16] or based on quantum-mechanical principles
[17-22]. The treatments employed vary. Ballistic heat trans-
fer in phononic systems was explored using the Landauer-
scattering formalism [23] and within the generalized Lange-
vin equation [16,24,25]. For interacting systems there are
only few analytical results, and the techniques employed in-
clude the kinetic-Boltzmann theory [26], mode-coupling
theory [27,28], the nonequilibrium Green’s-function method
[21,29,30], classical [15] and mixed classical-quantum [31]
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molecular-dynamics simulations, and exact quantum simula-
tions on simplified models [32].

The master-equation formalism [33] is another useful tool
for studying quantum heat transfer across nanojunctions
[34-36]. We have recently adopted this method in the weak
system-bath coupling limit and explored various aspects of
heat flow in simplified toy models [20,37-39]. Basically, we
ask ourselves the following question: what is the connection
between the microscopic Hamiltonian and the heat current
across the system? More specifically, how can we control the
onset of nonlinear current-temperature behavior [37,38] and
what conditions should the Hamiltonian satisfy for the sys-
tem to manifest normal conduction [20]? While our treat-
ment has been typically limited to a minimal subsystem, the
formalism has two main advantages: (i) both harmonic and
anharmonic systems can be treated within the same footings
and (ii) analytical results obtained can pinpoint on the under-
lying dynamics, typically obscured in numerical simulations.

In this work we extend our recent letters [39,40], broaden
our scope beyond the (nonlinear) thermal rectifying effect,
and develop a unified description of temperature-driven
quantum heat transfer at the nanoscale. We focus on two-
terminal devices, including a central quantized unit (sub-
system) and two bulk objects (referred to as terminals, con-
tacts, reservoirs, or baths), whose temperatures are externally
controlled. Our description can be applied on several sys-
tems, including electron-hole pair excitations, phonons, pho-
tons, or spins. However, our formalism does not describe the
heat flow due to the transport of hot charge carriers [3].

We analytically explore current-temperature characteris-
tics in various systems and seek to connect the nonlinear
behavior to the microscopic parameters: the system energet-
ics, the reservoirs characteristics, and the junction asymme-
try. We investigate the temperature dependence of the ther-
mal conductance and observe a rich behavior, depending of
the details of the model. We also demonstrate that the sub-
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FIG. 1. Examples of two hybrid systems treated in this work. (a)
Single-mode heat transfer between a solid and a spin bath. The
central unit can represent either a vibrational or a radiation mode.
(b) Phonon to exciton energy exchange.

system temperature in nonequilibrium situations is a sensi-
tive witness for the onset of nonlinear interactions in the
transport process.

In particular, we discuss two simple nonlinear effects:
thermal rectification, an asymmetry of the heat current for
forward and reversed temperature gradients, and a negative
differential thermal conductance (NDTC), where the current
goes down with increasing bias. While in the weak-system-
bath coupling limit employed NDTC is typically absent, we
observe the rectification phenomenon in various junctions.

Thermal rectification has recently attracted considerable
theoretical [37,41-50] and experimental [51,52] attention.
While most theoretical studies have analyzed this phenom-
enon in phononic systems using classical molecular-
dynamics simulations, our prototype model can describe
thermal rectification of several subsystems (vibrational or ra-
diation modes) and reservoirs (spin, metal, and dielectrics) at
the same footing (see Fig. 1). Moreover, using our simple
model we establish sufficient conditions for rectification [40].
We identify two classes of rectifiers: (i) “type A,” where the
reservoirs are dissimilar, i.e., of different (energy-dependent)
densities of states (DOSs) (this condition is more general
than the one discussed in Ref. [40]) and (ii) “type B,” where
the baths are identical, but their statistics differ from that of
the subsystem, combined with unequal coupling strengths at
the two ends, as explained below.

The content of the paper is as follows. In Sec. II we
present our model. In Sec. III we derive equations of motion
for the subsystem population using the quantum master-
equation approach. We consider several models for the sub-
system and for the contacts and derive analytical expressions
for the heat current. In Sec. IV we trace these junctions’
(nonlinear) current-temperature characteristics to the Hamil-
tonian parameters. In particular, Sec. V is focused on a spe-
cific nonlinear effect: thermal rectification. We analytically
identify two types of rectifiers and demonstrate with numeri-
cal simulations the tunability of the effect. Conclusions fol-
low in Sec. VL.

II. MODEL

We consider generic hybrid structures where a central unit
H interacts with two reservoirs Hg (v=L,R) of temperatures
T,=8,' (ky=1) via the coupling terms V,,

H=H)+Hy+Hg+V, + Vp. (1)

The heat current from the v bath into the subsystem is given
by [53], J,= éTr([Hg—HS,VV]p) (A=1), where p is the total
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density matrix, and we trace over both the subsystem and the
reservoir degrees of freedom. In steady state the expectation
value of the interaction is zero, Tr[(dV,/dt)p]=0, and we
obtain

J =i Tr([V,,Hglp), Jgp=iTr([Vg.Hslp). (2)

Since in steady state the currents are equal, J; =—Jg, we in-
troduce a symmetric definition for the heat current operator

J’

A A i
J=TilJpl, J=[V.Hsl+ E[HS’ Vil 3)

i
2
where the expectation value is defined positive when the
current is flowing from L to R. The subsystem Hamiltonian
assumes a diagonal form, and we also consider separable
couplings

)

HS = 2 En|n><n

V,=\,SB,, S=2,8,,lm)n|. (4)

n,m

Here, S is a subsystem operator and B, is an operator in
terms of the v bath degrees of freedom. For simplicity we set
Smn=Sum- In what follows we consider situations where B,
and By have the same dependence on the (respective) bath
degrees of freedom, with different prefactors \; # \g. We
refer to this scenario as “parametric asymmetry,” rather than
“functional asymmetry,” resulting from dissimilar B’s. Note
that, if the commutator [Hg,S]=0, the heat current trivially
vanishes.

III. DYNAMICS

Employing the Liouville equation in the interaction pic-
ture, the elements of the total density matrix satisfy

% —_ l[V(t),p(O)]m,n - f d?‘[V(I),[V(T),p(T)]]m,n’
0

(5)

where V=V, +V; and V(¢) are interaction picture operators.
Following standard weak-coupling schemes [33], we proceed
by making four assumptions. (i) We first make the presump-
tion that Tr[V(z),p(0)]=0, i.e., the mean value of the inter-
action Hamiltonian, averaged over the initial density matrix,
is zero. (ii) We factorize the density matrix of the whole
system, at all times, by the product p(t)=0c(t)p.(T;) pr(Tx).
0 0
Here, p, is independent of time, p,(T,)=e~/Tv/Tr [e /"],
and o() is the subsystem density matrix obtained by tracing
out the reservoirs degrees of freedom from the total density
matrix, o(1)=Trg[p(7)]. Trz denotes trace over both the L and
the R bath degrees of freedom. (iii) We take the Markovian
limit, assuming that the reservoirs’ characteristic time scales
are shorter than the subsystem relaxation time. (iv) We ne-
glect contributions from quantum coherences, i.e., in the
long-time limit we assume that the nondiagonal elements of
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the system density matrix vanish. This can be justified in the
weak-coupling limit adopting the initial condition o,,,(0)
~ 0. Following these assumptions, the Pauli master equation
for the populations P, (1)=Trg[p, ,(1)] is obtained as [33]

P,(1)= 2|s,m|2P (O, (T,) = Py(D) 2 IS,k (T,

v,m

(6)

The Fermi golden rule transition rates are given by
n~>m(T ) A f dr eiEn’mT<BV(T)BV(O)>TV' (7)
Here, E,.=E,—-E, and (B(1B,(0))r,

=Tr[p,(T,)B,(7)B,(0)] is the correlation function of the v

environment. In steady state P,=0, and we normalize the
population to unity =,P,=1. It is straightforward to show
that under Eq. (4) the steady-state current (3) becomes

J= 52 Em n|Sm n|2P X [kn*)m(TL) - ksﬂm(TR)]v (8)

n,m

with the population obtained by solving Eq. (6) in the long-
time limit. For details see the Appendix. Our description to
this point is general, as we have not yet specified either the
subsystem or the terminals.

A. Specific models for the subsystem Hamiltonian

We consider two representative models for the subsystem
Hamiltonian and its interaction with the baths. In the first
model the subsystem is a harmonic oscillator (HO) of fre-
quency o, Hg=>,nw|n)(n|. This can describe either a local
radiation mode [11,39] or an active vibrational mode of the
trapped molecule [38]. For the interaction operator we as-
sume S=3,\n|n)(n—1|+c.c., motivated by the bilinear form
V,xxB,, where x is a subsystem coordinate [38]. This im-
plies that only transitions between nearest states are allowed,

©

L) =K (1) =22

-0

dr ein<B 1/( T)BV(O)>TV5

(T,)=ePwk,_,_(T,). )

n 1—n

We also introduce the short notation

k'(T,) =N\f (T,), (10)

where f,, defined through Eq. (9), encompasses the effect of
the bath operators. Solving Eq. (6) in steady state using the
above expressions for the rates, the heat current (8) can be
analytically calculated as [37]

o[ny(w) - nj(w)]
né(— )/kH(T;) + ng(— w)/kR(Ty)’

JHO) — _

(11

where nj(w)=[e#**—1]7! is the Bose-Einstein distribution
function at 7,=1/,.

Our second subsystem is a two-level (spin) system (TLS).
Here, HS=§0'Z, and we employ a nondiagonal interaction
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form S=o0,. These terms can represent an electronic spin
rotated by the environment [12]. It can also describe an an-
harmonic (truncated) molecular vibration that is dominating
heat flow through the junction [37,38]. Recalculating the
long-time population (6), the heat flux reduces to

(TLS) _ w[”é(w) - n?(w)]

" n(= 0)IKH(Ty) + nf(= w)/KR(T)

with the rates (9) and the spin occupation factor ngw)
=[P+ 1L

Expressions (11) and (12) demonstrate that in the weak-
coupling limit the effect of the environment enters only
through the relaxation rates k”, evaluated at the subsystem
energy spacing w. In Sec. IV we further introduce a three-
level system (3LS), an intermediate structure between a two-
level (strongly anharmonic) system, and a harmonic object.
More generally, given the subsystem anharmonic potential
and an interaction operator S, one should proceed by (i) cal-
culating (analytically or numerically) the vibrational spectra
|n), (ii) evaluating the matrix elements of S, (iii) acquiring
the steady-state levels populations by solving Eq. (6), and
(iv) arriving at the heat current using Eq. (8).

(12)

B. Calculation of the rate constant

We give next the explicit form for the relaxation rate for
various physical thermal baths. The rate constants (9) in-
duced by, e.g., the L contact is given by the Fourier trans-
form of the bath correlation function <BL(T)BL(0)>T, with
B, = EB”,|Z>(I| and H)=3E|I)|. Here,
body states of the L reservoir with energies E;. Rate (9) can
be integrated to yield

KT, =2m>3 |BY P SE; - E; -
k"(T,) = wgl 8( +w) (ﬂ)

with Z,(B,)=% e %/ as the partition function of the v bath;
j,j e

(13)

1. Distinguishable noninteracting particles

This environment includes a set of independent (p
=1,2,...,P) particles. The Hamiltonian is given by sum-
ming all separate contributions

H°= Eh,,p, B,=>b,,. (14)

Within these terms, the relaxation rate (13) reduces to

Bl

KAT,) =202 2 il by i), 128, (0) =€) + )=
™ ~ < UpPupll/pl" OLENL) — €, wZ(,B)
(15)

with the p- partlcle eigenstates |i), and eigenvalues €,(i).
Z,(B,)= >,e P9 is the p-particle partition function. Spe—
01ﬁcally, for a bath of noninteracting spins (states |O> and
1), we get

k(T,) =T'(w)ng(- w), (16)
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with the spin occupation factor ng(w)=[ef**+1]™! and the
temperature-independent coefficient

T¥w) = 27022 [(0],b,,|1), 28w+ €,(0) — ,(1)).  (17)
P

2. Harmonic bath: Solid or radiation field

This bath includes a set of independent harmonic-
oscillators with creation operators ai’ ;- System-bath interac-
tions are further assumed to include the oscillator displace-
ments,

HB:E wja:r/,jav,p BV:E (av,j+a11;,j)' (]8)
j .

j
This leads to the relaxation rate
ky(TV) =- FE(Q))I’ZE(— 0)), (19)

with the Bose-Einstein function nj(w)=[ef**~1]"! and an
effective system-bath coupling factor

Th(w) =2m\22 8w, - w). (20)
J

3. Fermionic bath: Metal

Consider a metallic terminal including a set of noninter-
acting spinless electron creation operators ¢! . where only
scattering between electronic states within the same lead are

v’
allowed,
H3=E Eicj/,icu,i» BV=EC’I',Z'CVJ‘ (21)
i ij

The transition rate between subsystem states (13) can be
written as [13]

K(T,) =- 277)\3/1;(— ) A€~ €+ w)[np(e) — np(€+ w)],
ij

(22)

with the Fermi-Dirac distribution function njy(e)= [ePrlem)

+177", where u, is the chemical potential. One could also
write

kM(T,) == AT, w)ng(- o), (23)

where

ng(- o)I'y(w),

) =4 @),

14

T
—ng(- w)(l + 5,,—V>FZ((»), metal.
o
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FIG. 2. Nonlinear heat flow in various hybrid junctions. (a)-(c)
w=1, T,=2. (d)—(f) 0=0.1, T,=15. (a) and (d) are harmonic junc-
tions with the current (29); (b) and (e) are spin junctions obeying
Eq. (30); (c) and (f) are harmonic bath-spin junctions obeying Eq.
(31). T't=10, I'R=1 in all figures. The x axis is AT.

AT, w) = 2’7Tf delnp(€) —np(e+ w)]F (e). (24)

The function F, (€)= )\?,Z de—€;+w)5(€;—€) depends on the
system-bath coupling elements and the specific band struc-
ture. Assuming that the density of states slowly varies in the
(subsystem) energy window w, the interaction function can
be expanded around the chemical potential [13] F,(e€)
~F,(u,)+7[(€-um,)/p,], with y, as a dimensionless
number of order unity. Using this form, the integration in Eq.
(24) can be performed when the Fermi energy is much bigger
than the conduction band edge u,> E,.. One can then write

T
AT, 0) = FZ(w)<1 + 5V—V>, (25)
My
where & is a constant of order 1, measuring the deviation
from a flat band structure near the chemical potential wu,
[39]. The coupling constant is given by

(o) = 270F (). (26)

When 6,=0 we find that A*(T,,w)=I"j(w), a temperature-
independent constant, and the harmonic limit (19) is re-
trieved [39].

To conclude this discussion, assuming different types of
reservoirs and system-bath couplings, we derived here three
expressions for the relaxation rate (13) [or equivalently Eq.
(9)]: Eq. (16) assuming a spin bath, Eq. (19) for a phononic
environment with a linear coupling to the subsystem, and Eq.
(23) for a metallic bulk with electron-hole pair excitations

noninteracting spins

phonons,linear coupling (27)
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In each case the coefficient I'” reflects temperature-
independent system-bath interaction strength, whereas the
temperature-dependent function reflects the reservoir proper-
ties only.

IV. NONLINEAR CURRENT-TEMPERATURE
CHARACTERISTICS

Based on the two models for the subsystem (HO and
TLS) and the different types of baths, we can construct sev-
eral two-terminal heat-conducting junctions. We consider
next few examples and manifest nonlinear current-
temperature behavior. We will also introduce a 3LS, an in-
termediate structure between a two-level (strongly anhar-
monic) system, and a harmonic object. Formally, if we write
the heat current as

J(T,AT) =2, a,(T,)AT" (28)

with AT=T,-T, T,=T;+Ty, we ask ourselves what are the
microscopic parameters that are incorporated in the nonlinear
coefficients a, (n>1) and how can we control the magni-
tude of these terms. We also define the thermal conductance
as K=limyy_oJ/AT and examine its temperature depen-
dence.

A. Harmonic junction

Our first example is a fully harmonic system, incorporat-
ing two harmonic reservoirs connected by a harmonic link,
modeling vibrational or photonic heat transfer between two
solid or Ohmic metals [11,24,54], assuming that a specific
harmonic mode of frequency w dominates the dynamics. The
current is given by Eq. (11) with rates (19), resulting in the
thermal Landauer expression [23]

J = Tgolng(w) - nj(w)] (29a)
Bw<l >
— Tl AT - 3—T4AT3 +O(AT) |. (29b)

a

Here, Tp=T5I'R/(IL+T%) is a (temperature-independent)
transmission coefficient, with the coupling elements I'; cal-
culated at the molecular frequency . This equation de-
scribes ballistic thermal transport, where energy loss takes
place only at the contacts. Note that in the classical limit J
« AT, K=Tp, and the current does not directly depend on the
molecular (subsystem) vibrational frequency only through
the coefficient I'. For a harmonic junction, nonlinear effects
are thus purely quantum, originating from the quantum sta-
tistics.

B. Spin junction

Our second example is a spin-TLS-spin system represent-
ing, e.g., a central electron interacting with two nuclear-spin
environments under an applied magnetic field [12]. The cur-
rent is given by Eq. (12) with rates (16), bringing in a spin-
Landauer formula
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J = Tyo[nk(w) - nf(w)] (30a)
©By=l 2 AT)"

Te— —, 30b

- STa n=1§,5,... ( Ta ( )

with the transmission coefficient ’TS=F§F§/(F§+F§), Igis
evaluated at w, the central spin energy spacing. Unlike Eq.
(29b), the linear-response term here does depend on the sub-
system frequency, K:’TSwZ/TZ, and nonlinear terms persist
even in the high-temperature limit. Note that both Egs. (29a)
and (30a) are in the form of Landauer formula, since only
elastic scattering processes are effective (system and reser-
voirs are identical). Our next two examples bring in devia-
tions from the Landauer picture.

C. Harmonic bath-spin subsystem junction

Consider again vibrational heat flow. However, unlike the
fully harmonic model resulting in Eq. (29), the central unit is
assumed here to incorporate anharmonic terms [37,39,50].
This can be implemented by modeling the subsystem by a
truncated harmonic oscillator, for example, a spin. The cur-
rent across the device is evaluated using Eq. (12) with rates
(19),

Il plnp(w) - np(w)]

= 31
wl_'lé[l +2n5(w)] + TR + 2n8(w)] (1a)
wfB,<1 “ AT \"
S () (31b)
n=1 a

where xp=(T5—T5)/(I'L+T"}) measures the spatial asymme-
try. Note that we could still organize Eq. (31a) in the form of
the Landauer formula with a temperature-dependent trans-
mission coefficient [21]. The high-temperature linear-
response limit yields =7zw/T,. Nonlinear terms survive in
Eq. (31b) only due to the asymmetric coupling, since for
x=0, JxAT. Thus, quite interestingly, this anharmonic
junction conducts linearly (in the classical limit), as long as it
is fully symmetric.

Can we identify a regime where the current decays with
increasing temperature bias? This highly nonlinear effect is
referred to as “negative differential thermal conductance,”
and we prove next that it is absent in the present model. In
the high-temperature regime, we calculate the derivative of
Eq. (31b) as

al (AT
- J— n—1
AT n( T ) Cxa™- (32

n=1 a

Assuming that the junction is highly asymmetric, I'5>T%,
we take xyp~ 1 and obtain
aJ

—— o]l =2x+3x% -4+ o =
IAT

, 33
(1+x)? (33)
with x=AT/T,. Since this derivative is always positive, the
current systematically grows with temperature bias, and the
NDTC effect is absent. Note that a pure harmonic model
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(30b), as well as a spin model (29a), also precludes NDTC.

In Fig. 2 we exemplify the properties of junctions (29a),
(29b), (30a), (30b), (31a), and (31b) with asymmetric cou-
plings I'“# Tk, taking w, the subsystem characteristic en-
ergy, to be either on the order of the reservoirs temperature,
w~T,, or significantly lower. In the first case subplots (a)—
(c) reveal that the current saturates at large AT, reflecting the
quantum statistics. In contrast, in the high-temperature limit,
while a pure harmonic system (d) shows a linear current-AT
characteristic, the other two systems (e) and (f), incorporat-
ing some nonlinearities, reveal a nonlinear behavior.

D. Three-level junctions

In order to further elucidate the role of uniform energy
spectra in nonlinear transport, we construct next a 3LS, an
intermediate structure between a two-level (strongly anhar-
monic) subsystem, and a harmonic object. We assume that
both the subsystem and the reservoirs include (equivalent)
3LS particles, Hg=X,_;,3E,/n)Xn|, S=|1)(2|+|2)(3|+H.c.
The current (8) reduces to

w
7= D_lkliﬁlkgﬂl(e_ﬂl‘wl - e_’BRwl)
1

w
+ 5 Kok glePien - ), (34)

with (1)1=E2—E1, (1)2=E3—E2, and

Dy =k _rky_slks_p +ki_n+kyy,

Dy=ks ks 1k a+ks o+ky 3. (35)
Here, k;_, j=k~L +kR . with the rates defined in Eq. (7). Tak-

i—j i—j°
ing w=w;=w,, and assuming that the reservoirs include col-
lections of 3LS noninteracting particles of equal spacing w,
we obtain the following expression, using Eq. (15) (w<T,):

16 o’ AT\"
itn 3 (8
T,

97T, (36)

n=1,3,5,...

with Tg=Ti05/(D5+T%) and Tg=27\2S (] b, i), > Hw
+€,(i)—€,(j)); i<j. This expression is essentially similar to
Eq. (30). It is notable that only odd terms survive, irrespec-
tive of the spatial asymmetry (I'C # I'R). It can be shown that
even terms participate only when the energy spectra along
the device becomes inhomogeneous.

E. Energy flow between metals

Energy transfer between metals, mediated by the excita-
tion of a single radiation mode, has recently attracted con-
siderable  experimental  and  theoretical  interests
[11,39,50,54]. Analogous junctions are the core of molecular
electronics, where the bridging modes are the vibrations of
the trapped molecules. For example, heat dissipation in a
metal-Cgp-scanning tunneling microscope (STM) junction
was demonstrated to be controlled by vibrational decay into
the tip, generating electron-hole pair excitations [4,13]. Heat
conduction through a DNA-gold composite, suspended be-
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FIG. 3. Negative differential thermal conductance in a metal—
single-mode—metal junction with y=0.2 (solid line). Th=T"%=1,
T,=3, w=0.5. The dashed curve was generated using y=5, mani-
festing behavior similar to the fully harmonic case (29). Inset: the
function F(e) [see Eq. (24)] vs energy for y=0.2 (solid line) and
vy=5 (dashed line).

tween two electrodes, was found to be dominated by phonon
transport [55].

When both metals are Ohmic, the current in the weak-
coupling limit is given by Eq. (29) [39]. As we show next,
for structured reservoirs nonlinear effects emerge in the clas-
sical limit. We calculate the heat current using Eq. (11) with
rates (23)—(25), assuming pu=p, and 6=4,, i.e., the reser-
voirs are equivalent and are maintained at the same chemical
potential. This leads to

FI;F%(l + 5£>(1 + 5§>[nll;(w) —np(w)]
© “

T T
Fle(l + 5—1‘) + I";(l + 5—R>
M M

J=w

(37a)
wf,<1 Tu S )
— Tp| | 1+ 65— |AT — xp—AT
2u 2u
& TR
- —2LF—FRzAT3 +O(ATY |. (37b)
o (Cp+Tp)

In deriving Eq. (37b) we assumed that 67,/2u<1. Here,
Xp=CE=T®)/(TE+T%) measures the asymmetry in the
system-bath coupling and 7=T%I'}/(I%+T%). The follow-
ing observations can be made. (i) The nonlinear contribu-
tions are all related to a finite &, measuring the deviation
from a constant density of states [39]. If §=0, the harmonic
limit is recovered. (ii) The existence of even terms, e.g., a
AT? term, requires some asymmetry, xr#0, as we discuss
below [see Eq. (51)]. (iii) The conductance of the junction
scales like K=73(1+6T,/2u), in sharp contrast to the be-
havior of phononic systems.

In Fig. 3 we study energy transfer between metals em-
ploying a Lorentzian density of states of width y, D,(e€)
=(y/2m)/(€2+y/4%). We observe a small negative differen-
tial thermal conductance, i.e., a decrease in the current with
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increasing temperature difference at large temperature bias.
The effect prevails when y= w, i.e., the reservoir density of
states is notably changing over the subsystem energy scale.
The data were generated by employing Eq. (11) with the rate
(23). The inset presents the F function (24), evaluated with
the Lorentzian DOS.

Summarizing, while in pure harmonic systems nonlinear
dynamics is linked to quantum effects (29), spin systems
manifest nonlinear dynamics irrespective of the subsystem
frequency [Egs. (30) and (36)]. In a simple model for anhar-
monic vibrational heat flow (31), nonlinearities are attributed
to the spatial asymmetry, while nonlinear effects in excitonic
energy transfer are linked to the metals’ energy dependent
density of states (37). The conductance temperature depen-
dence also varies. For harmonic systems it is independent of
temperature, while for anharmonic phononic systems it de-
cays like 1/7, in general agreement with experimental results
[56]. In metal-single-mode-metal junctions the conductance
increases with temperature due to the enhancement of the
transition rate with 7.

With respect to NDTC, we note that it is not trivial to
acquire the effect in weakly coupled junctions. Besides the
metallic case (Fig. 3), the presented examples either yield
positive expansion coefficients a,>0 [see Eq. (28)] or an
alternating-sign series, where the overall current grows with
AT (33). In order to attain significant NDTC the rate con-
stants, e.g., k“(T,+AT), should strongly decrease with in-
creasing AT. This can be realized by using reservoirs with
nonuniform density of states, as we showed above, or by
going beyond the weak-coupling approximation [38].

F. Effective temperature

We would like next to suggest that a measurement of the
subsystem temperature in a nonequilibrium situation could
indicate the importance of nonlinear interactions in the trans-
port process. Consider, for example, a single-mode junction,
where the central object is modeled by a harmonic oscillator
of frequency w. Irrespective of the type of reservoirs and the
form of interaction, we define next the central object effective
temperature 7T, through the relative levels occupation in
steady state,

P,
=, (38)

n—1

Since the system is out of equilibrium and, furthermore, the
subsystem is a small-quantized object, T), is not a tempera-
ture in the standard thermodynamic sense, yet it can be mea-
sured: in a recent experiment [57] a surface-enhanced Raman
spectroscopy method was used to determine the nonequilib-
rium occupancy of vibrational modes and the effective
(mode specific) temperature of current-carrying junctions.
For harmonic subsystems for any pair of levels, we find that
[38]

Ty =—w/lnx, (39)

where
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FIG. 4. Effective subsystem temperature in a metal-single-
mode-metal junction with y=0.2 (solid line), y=5 (dashed line),
and for linear metals, y— o (dashed-dotted line). Fé:l’f;:l, T,
=3, w=0.5.

T+ T 40

with the rate constants defined in Eq. (13). Assuming har-
monic reservoirs and bilinear coordinate-coordinate interac-
tions, e.g., the reservoirs are harmonic solids or linear elec-
tromagnetic media [11], we obtain the subsystem
temperature

Ty= wL R\ " (41)
rk+rk )

Inl1+ ==
( Tink + TR

In the classical limit this reduces to the algebraic average
TM=(1"IL),TL+1"§TR)/(FIL),+F§). While in an equilibrium situa-
tion (T, =Tg) Ty, always approaches the reservoirs’ tempera-
ture irrespective of the internal dynamics, in nonequilibrium
situations a deviation from Eq. (41) might occur, indicating
on the importance of nonlinear interactions in the transport
process.

As an example, consider a metal-single-mode—metal
junction as in Fig. 3. For the same data, we present in Fig. 4
the temperature T, as defined in Eq. (38), using the rate
constants (23) with a Lorentzian density of states of width v,
D (€)=(y/2m) /(€ +y/4%). At large 1y the reservoirs density
of states is effectively constant, the reservoirs are linear, and
the harmonic behavior is recovered (dashed-dotted line). In
this case the departure of T}, from the classical 7,,/2 value is
due to the importance of quantum effects at low 7. On the
other hand, if the density of states strongly varies with en-
ergy (full line), reflecting deviations from the harmonic pic-
ture [39], a significant diversion from the harmonic behavior
comes forth, and a substantial decrease in temperature (to
half the harmonic value) is observed. It is interesting to note
that while the heat current in Fig. 3 is linear in AT for a wide
range of temperature differences, 7, is a more sensitive
measure for the onset of nonlinear interactions.
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V. THERMAL RECTIFICATION: SUFFICIENT
CONDITIONS

We focus next on a specific nonlinear effect, thermal rec-
tification, asymmetry of the heat current for forward, and
reversed temperature difference, |J(+AT)|#|J(=AT)|. For-
mally, the onset of this phenomenon is identified by the ex-
istence of even terms, ay_,,#0 (n=1,2,...), in expansion
(28).

We discuss here sufficient conditions for thermal rectifi-
cation by analyzing the currents in Egs. (11) and (12). These
expressions are naturally not the most general results for heat
transfer across hybrid structures. Rather, they relay on few
assumptions as explained in Sec. III: the subsystem and res-
ervoirs are weakly interacting, the baths are assumed to be
held at thermal equilibrium, and the dynamics is Markovian.
Furthermore, specific forms for the subsystem are employed.
However, these analytical forms, derived from a prototype
model, can still illuminate on the basic mechanisms involved
in thermal rectification. Having said so, we return to Egs.
(I1) and (12) and analyze their structure for forward (77}
=Ty, Tg=T¢) and reversed (T;=T., Tr=Ty) temperature
gradients, Ty >T.. We note that in each expression sepa-
rately these currents deviate in magnitude if the denomina-
tors fulfill

n(- w)

KA(Ty)

n(- w)

T RT)

n(- w) . n(- )
KNTe)  KX(Ty) '

where n” is either the spin occupation factor or the Bose-
Einstein distribution. Rearranging this expression and mak-
ing use of Eq. (10), we get

nf(- w) ~ nf(- w) . n¢(- w) ~ n¢(- w)
NfUTy)  Nafe(Tw)  Nofu(To)  Nafe(To)

In what follows we identify two classes of rectifiers. In
type-A rectifiers system-bath interactions are equivalent at
both contacts, but the reservoirs have distinct properties. In
type-B rectifiers the reservoirs are equivalent, but the sub-
system statistics is distinct from the baths, combined with
some parametric asymmetry.

(42)

(43)

A. Type-A thermal rectifier

The rate constants (13) can be expressed in terms of the
reservoirs density of states. For example, the rate induced by
the L contact is given by

e P
KANT) =2m\2 >, |BY, P S(E, - Ey + o)
Ll’lr LI ! ! ZL(ﬁ)

f de e D (e)g; (€, )
=27\} : (44)

fde e D, (€)

Here, Z;(B)=2,e7PEi=[de ¢ P°D,(€) denotes the partition
function of the L bath with the density of states Dj(e)
=3,0(e-E)). The function g;(e,w)==|B (e,E)|*de-E,
+w) characterizes system-bath interactions. Taking A\, =Ag,
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we note that since the two sides of Eq. (43) depend on dif-
ferent temperatures, the system rectifies heat if

Ju(T) # fr(T), (45)

besides special points in the parameter space, depending on
the details of the model. Using Eq. (44), this condition re-
duces to

Jde e PD, (€)g; (€, w) fde e PeDp(e)gr(e, w)
+

fde e D, (€) fde e PeDg(€)

(46)

We next further assume that g; (e, w)=gg(€, ), i.e., system-
bath interaction matrix elements are equal at both ends.
Hence, inequality (45) is satisfied when

D, (€) # Dg(e). (47)

We thus recover a sufficient condition for thermal rectifica-
tion: the density of states of the reservoirs should be distinct.
Note that at least one of the reservoirs should have an
energy-dependent DOS. If both reservoirs are harmonic, D,
=c,, with ¢, being a constant, rectification is absent even for
c.Fcg. It is thus sufficient to have one of the reservoirs
incorporating anharmonic interactions. If both reservoirs are
nonlinear, rectification takes place if the energy spectra are
distinct. This discussion relays on the assumption that the
spectral function g(e,w) explicitly depends on energy; see
Eq. (46) and [58].

Going back to condition (46), we Taylor expand the inter-
action function around o, g,(€, ) ~ a;(w)+ ay(w)e,

fde e PD, (e)e Jdé e PDy(e)e
#* ) (48)

fde e D, (€) Jde e PeDg(€)

We identify the left- (right-) hand side as the average energy
of the L (R) reservoir. This relation manifests that rectifica-
tion exists if (Hg)i(H%) as in [40]. Specifically, consider
interfaces including one-dimensional oscillator chains, Hg
=H""+HP”, where the kinetic energy H." is quadratic in
momentum, and the potential energy per particle is C,g",
where n=2 and ¢ is the particle’s coordinate. In the classical
limit using the equipartition relation, we obtain <H3)=TV(%
+ﬁ). Thermal rectification thus emerges if the reservoirs
have a nonidentical power n. Note that the separation to three
segments (L, subsystem, and R) is often artificial: the junc-
tion could be practically made of a single structure with a
varying potential energy, e.g., a nanotube whose composition
gradually changes in space [51], leading to inhomogeneous
energy spectra, and thus to thermal rectification.

To conclude, rectification has been obtained here relying
on the DOS asymmetry D;(€) # Dg(e€), while system-bath
interactions are assumed symmetric, A\;=\; and g;(w,e€)
=gr(w, €), energy-dependent functions. This conclusion is in
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accord with multitude (numerical) observations, demonstrat-
ing rectification in two-segment dissimilar anharmonic lat-

tices [42-46].

B. Type-B thermal rectifier

We explore next the role of the subsystem statistics in
inducing thermal rectification by further studying inequality
(43). As discussed above, type-A rectifiers are constructed
assuming that f;(T)# fx(T), resulting from the use of
dissimilar reservoirs. However, a more careful analysis of
Eq. (43) reveals that rectification prevails even when
(D) =f(T)=fr(T), as long as N\, #\g and the ratio
n’(-w)/f; z(T,) depends on the temperature 7,. We show it
by rearranging Eq. (43),

n(- ) ( 1 1

(- w) ( 1 1 ) "

ATy \N\p Np) o AT \\ A
In order for the two sides to deviate, the ratio, e.g.,
n(—w)/ f(Ty) must depend on the respective temperature. In
other words, the relaxation rates’ temperature dependence
should differ from the central unit particle statistics. As
shown in Sec. III B, the function f,(T) reflects the reservoirs
statistics [see Egs. (10) and (27)]. We therefore classify
type-B rectifiers as junctions where subsystem and bath dif-
fer in their statistics, and the identical reservoirs are asym-
metrically coupled to the subsystem \; # Ag. This observa-
tion is in agreement with other studies. For example, in Ref.
[39] rectification was demonstrated in a quantum-mechanical
model where photon-mediated heat current flows between
two (asymmetrically coupled) nonlinear reservoirs. Refs.
[37,50] consider a nonlinear subsystem mode while the res-
ervoirs are taken harmonic, yielding rectification due to the
inclusion of some spatial asymmetry.

Summarizing, in type-B rectifiers the reservoirs and
system-bath couplings are equal at both ends, D;(€)=Dg(€)
and g, (€, w)=gg(€, ), but (i) one of the contacts is weaker,
N1 # Ag, and (ii) the subsystem statistics differs from the res-
ervoirs’ statistics.

) . (49)

C. Examples

In what follows we exemplify type-A and type-B rectifi-
ers. The magnitude of thermal rectification can be estimated
by the sum AJ=Jyp+J_pp, Where Jopr=J(T;—Tx= £ AT),
or by the ratio R =|J,7/J_a7]. As expected from our general
analysis above, a fully harmonic system (29), a pure spin
system (30), and a uniform 3LS model (36) do not rectify
heat irrespective of the spatial asymmetry embodied in y
#0, since (i) the DOS of both contacts are equal and (ii)
subsystem and baths are equivalent. This should be empha-
sized since the latter two cases can be viewed as anharmonic
structures due to the truncated energy spectra. In contrast, for
a harmonic bath-TLS-harmonic bath junction (31), we obtain
the ratio

AT
R~1-2""xp. (50)

a

Similarly, for a metal-single-mode—metal junction, using Eq.
(37) at small &, we find
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s
R ~ 1 - —yAT. (51)
y2

Thus, in type-B rectifiers the strength of the effect is directly
linked to the spatial asymmetry, x # 0 [37,39].

We demonstrate next some type-A rectifiers, where the
reservoirs have distinct properties. In order to simplify the
presentation we set F:Fézrg, i.e., the central unit is evenly
coupled to the reservoirs. Our first example is a phonon bath-
HO-spin bath junction, representing e.g., an insulating mol-
ecule interfacing a dielectric surface and a nuclear-spin en-
vironment. For a schematic representation see Fig. 1(a). The
current is calculated using Eq. (11) with rates (16) and (19)
resulting in

(@) = ()

J=Tw . (52)
(- w)
ny(- w)
The magnitude of thermal rectification is
1 ( 2w )
-_— e -_—
ng (- w) P T,- AT
= = (53)
ng(— o)

)
T,+AT

It is easy to see that, when 2w/ (T, = AT)> 1, the rectifier is
effectively turned off while for 2w/(T, = AT)<<1 it is opera-
tive, with R ~1+2AT/T,.

Our second example is a phonon bath-HO-metal junction,
representing an electronic to vibrational energy conversion
device [see Fig. 1(b)]. This system can be realized in a
metal-molecule contact, where the vibrational decay into the
lead (e.g., an STM tip) is bottlenecked by a single vibrational
mode. Setting the coupling strength at both contacts to be the
same, 1"=1"1L),=I‘f~, we get

1—exp<—

n(w) = ()

J=ol > (54)
Ty
1+ (1 + 5R—>
MR
with the rectification ratio
T T
<2 + 5R—H)<1 + 5R—C>
MR MR AT (55)

R= T T ~1—5R2 .
(1 + 5R—”)<2+5R—C> Hk
MR

This expression is similar to Eq. (51). However, since here
the reservoirs are distinct (effectively 8;,=0, 8 #0), rectifi-
cation is obtained for y=0.

Figure 5 presents a similar instance, vibrations to elec-
tronic excitations energy exchange, mediated by the excita-
tion of an anharmonic molecular (TLS) mode. Interestingly,
for small w the solid transfers heat to the metal more effec-
tively that the reversed metal-to-dielectric process, reflected
by a rectification ratio larger than 1. For large spacing the
behavior is reversed, and the metal better cools down. Con-
sequently, there is an intermediate value (w~ 3 for 5k=0.4)
where this nonlinear-inhomogeneous junction does not rec-
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FIG. 5. Electronic to vibrational energy exchange through a TLS
mode with 8;=0.05 (solid line), 8=0.2 (dashed line), and &
=0.4 (dashed-dotted line). Rectification ratio is presented as a func-
tion of the subsystem energy spacing. T,=3, AT=1, up=1, Flé
=I'R=1.

tify heat. The rectification ratio obtained here is relatively
small, since the metal only weakly deviates from the Ohmic
description [39]. This example still demonstrates that by op-
timizing system and interface parameters it may be possible
to design a junction where the electron bath can be rapidly
cooled down, while the vibrational energy ineffectively dis-
sipates into the metallic bulk, and vice versa.

Finally, we examine a spin-subsystem-metal junction. In
Fig. 6 we show that it can rectify heat in the classical limit
(w<T,) while in the quantum regime rectification is sup-
pressed. We also modify the system-metal coupling strength
and show that it can largely control the rectification ratio
(inset).

VI. SUMMARY

This paper provided a unified description of heat flow in
two-terminal hybrid structures assuming weak system-bath

1
0.9}
o
0.8r 05 1 15 2 1
—spin—-HO-metal ®
- --spin—-TLS-metal
0.7 0.5 1 1.5 2

(0]

FIG. 6. Spin-HO-metal rectifier (solid line) and a spin-TLS-
metal rectifier (dashed line). The rectification ratio is presented as a
function of the subsystem energy spacing. 7,=0.5, AT=0.1, &
=0.2, up=1. Main plot: the subsystem is equally coupled to the two
ends, Fé =F§=1. Inset: R can be tuned by manipulating system-
bath interactions; F§= 1, Fﬁ:0.0S.
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couplings. The underlying origin of nonlinear behavior in
various junctions, and its controllability, were explored con-
sidering different interfaces—metals, insulators, and nonin-
teracting spins—where the central object (subsystem) could
represent, e.g., a radiation mode or a vibrational excitation.

As a particular example of nonlinear conduction we ex-
amined thermal rectification. Previous studies of this effect
were typically based on numerics, utilizing classical
molecular-dynamics tools, where observations were deduced
within specific molecular force fields [41-48]. Here, in con-
trast, we attempted a general analytical study of the sufficient
conditions for the onset of thermal rectification in hybrid
quantum models. We identified two classes of rectifiers:
type-A rectifiers, where the interfaces are made distinct, and
type-B rectifiers, where the reservoirs are equivalent, but the
system and bath quantum statistics differ, in conjunction with
some spatial (parametric) asymmetry. We note that the im-
portance of anharmonicity and asymmetry for manifesting
rectification were previously recognized, e.g., in a spin-
boson model [37], yet the necessity of the inhomogeneity of
the energy spectra was not appreciated. Here, we clearly ob-
serve that a system composed of identical anharmonic units
cannot rectify heat, unless the energy spectra are made non-
uniform, in conjunction with some spatial asymmetry.

Our study aims to link transport characteristics to the mi-
croscopic Hamiltonian. It might serve as a guide for experi-
mentalists pursuing control over energy transfer in molecular
systems [4,7,8,55] and for building nanoscale thermal de-
vices [59,60]. We have also demonstrated that nonlinear ther-
mal effects, and in particular thermal rectification, are ubig-
uitous phenomena that could be observed in a variety of
systems—phononic [51], electronic [52], and photonic
[11,39,54].
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APPENDIX: DERIVATION OF THE HEAT CURRENT
EXPRESSION WITHIN THE MASTER-
EQUATION FORMALISM

The aim of this appendix is to derive the heat current
expression (8) within the Hamiltonian (4). The expectation
value of the current is formally given by

A A0 i
J=TilJp], J= E[VL,HS] + E[Hs, Vil (A1)
Using the Hamiltonian (4) we get
i
= EE En,mSm,n TrBD\LPn,mBL]
i
- 52 En,mSm,n TrB[)\an,mBR]’ (AQ’)

n,m

where E, ,=E,—E,,, Trg denotes trace over the L and the R
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baths, and p is the total density matrix whose elements
should be calculated in the long-time limit since expression
(A1) is valid in steady-state situations only [53]. We find it
useful to rearrange Eq. (A2) as follows:

i
=3 E En,mSm,n TrBD\L(pn,m - pm,n)BL]
2n>m
‘

- 9 E En,mSm,n TrB[)\R(pn,m - pm,n)BR]' (A3)

n>m
We would like to express the current in terms of the long-
time population P,. The Liouville equation of motion for
Pnm 18

pn,m =- iEn,mpn,m - lz 2 )\V[Bv(t)Sn,ppp,m(t)

vop
- Sp,mpn,p(t)BV(t)]’
with the transformed operators B, (f)=eVB e~ (v=L,R).

The index p counts the subsystem states. This equation can
be formally integrated to yield

(A4)

t
Pum(t) =—1i f e"‘Envm“-ﬂ[E NB (DS, pPp (T

0 v.,p

-> xys,,,mpn,,,u)BV(r)]dT. (AS)
v.p

The initial condition was already neglected since it will not
contribute after tracing out the bath in Eq. (A3), assuming
Trg[B(2),p(0)]=0, i.e., the mean value of the interaction
Hamiltonian, averaged over the initial density matrix, is zero.
Plugging Eq. (AS5) into Eq. (A3), we obtain A order terms.
Factorizing the density matrix at all times, p(z)
=pU(TpR(TR) (1), p,(T,)=e 7o/ Tr [ V7], where o(1)
=Trg[p(r)], and taking the Markovian limit, replacing o(7)
—o(1), we get

t
Trgl p,(0)BL(1)] = _i)\LEJ ¢ Enm(i=7)
p YO

X [<BL(I)BL(T)>TLUp,m(t)Sn,p

- <BL( T)BL(I)>TLO-n,p(t)Sp,m]dT'
(A6)

Here, <B,,(T)B,,(O)>TVETr,,[pv(T,,)B,,(T)B,,(O)] is the correla-
tion function of the v environment. In deriving Eq. (A6) we
disregarded mixed terms of the form (B;(7)Bg(7)), since the
terminals are not correlated. Our next assumption is that co-
herences are negligible in the weak-coupling scheme, given
the preparation o,,,,(0) ~0; thus, we disregard all the non-
diagonal terms in Eq. (A6). Further, performing the transfor-
mation x=7—¢ and extending the integral to infinity (Mar-
kovian approximation), we obtain
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o]

Trg[pym(D)BL(1)] = - i)\LJ‘ e'Fnmt
0

X [<BL(O)BL(X)>TL0-m,m(t)Sn,m
- <BL(x)BL(O)>TL0-n,n(t)Sn,m]d-x'

(A7)
Similarly, we find that
0
Trg[p,,(1)B(1)] =~ - i)\Lf ¢!t
X[(BL(X)BL(O)>TLUlz,n(t)Sm,n
- <BL(O)BL(X)>TLO-m,m(t)Sm,n]dx-
(A8)

Combining the last two expressions, we come by (using
Sn,mzsm,n)

TrB{[pn,m(t) - pmn(t)]BL(t)}

= iALS11,171an(t)f eiEn’mx<BL(x)BL(O)>TL

o0

- Pm(l)

—00

eiEn‘”1x<BL(O)BL(x)>TL] : (A9)

We return now to the heat current expression (A3) and iden-
tify the v-bath-induced relaxation rates by

k(T =N, f dr eFrn(B,(1)B(0))r,.  (A10)

By making use of Eq. (A9), conjoined with the analogous
R-bath expression, we get a weak-coupling expression for
the heat current, defined positive when flowing from L to R,

1
J=- 5 E En,m|Sm,n|2[Pnk1;;—>m(TL) - P111k§1—>11(TL)]
n>m
1
+ E E En,m|Sm,n|2[Pnkf—>m(TR) - Pmksl—m(TR)]v
n>m

(A11)

or more compactly

1
=22 EnalSunl Pull_n(T0) = K (Te)]- (A12)

n,m

This is our final result, a second-order (A\?) expression for the
heat current, obtained within the master-equation approach.
The populations P, should be calculated at long time using

Eq. (6).
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